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Visualization of Effect Algebras by Automorphisms
Anatolij Dvure censkijt

Received August 20, 2002

We show that every effect algebra satisfying the Riesz decomposition property can be
represented as an effect algebra of automorphisms of an antilattice, and every MV-
algebra can be represented as an MV-algebra of automorphisms of a linearly ordered
set. Such a representation enables us to visualize effect algebras by functions. This is a
variation of the Holland representation theorem fagroups and of its generalization

of Glass for directed interpolation po-groupstagroups or po-groups automorphisms

of linearly ordered set or of an antilattice, respectively.
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1. INTRODUCTION

Effect algebras entered mathematics and, in particular, quantum structures at
the beginning of nineties by the Foulis and Bennett (1994) motivating by D-posets
(Kdpka and Chovanec, 1994), and they combine both algebraic and fuzzy ideas
that are involved in the most important example, the set of effect oper&{dts,
the set of all Hermitian operators of a Hilbert spad¢dhat are between the zero
and identity operator.

Nowadays effect algebras are an important part of quantum structures that are
a mathematical background of quantum mechanics. In many cases, such algebras
are intervals in po-groups, lik€(H) is an interval in the po-group(H), the set
of all Hermitian operators of a Hilbert spatk

Ravindran (1996) showed that every effect algebra satisfying the Riesz de-
composition property (RDP) is also an interval in an interpolation Abelian unital
po-group. Similarly, MV-algebras are also intervals in Abelian urdtgtoup as
it follows from the famous result of Mundici (1986). Recently, Eaad\d showed
every lattice effect algebra can be covered by blocks, maximal compatible sets,
which are in fact MV-algebras. So that, when quantum logics and Boolean alge-
bras correspond to measurement in quantum mechanics or Newtonian mechanics,
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respectively, so do effect algebras and MV-algebras when our measured data are
roughly speaking unsharp or fuzzified.

In the present paper we show that every effect algebra satisfying (RDP) and
every MV-algebra can be visualized, i.e., represented by the effect algebra and
MV-algebra of automorphisms of an antilattice or of a linearly ordered set. This
gives an analogue of the famous Holland representation theorem (Holland, 1963)
of £-groups as a set of automorphisms of a linearly ordered set, as well as its
generalization of Glass (1972) for directed interpolation po-groups.

The paper is organized as follows. In the Section 2 we define effect algebras
and their representation. Section 3 deals with ideals and mainly with prime ideals
showing that an ideal is prime iff its quotient is an antilattice. The main represen-
tation results are in the Section 4. Having such a representation, we are able to
visualized and better to describe the structure of effect algebras.

2. EFFECT ALGEBRAS

An effect algebrais by Foulis and Bennett (1994) a partial algelita=
(E;+, 0, 1) with a partially defined operation and two constant elements 0 and
1 such that, for alf, b, ¢ € E,

(i) a+ bis defined inE iff b 4 a is defined, and in such the case- b =
b+a;
(i) a+ b, (a+ b)+ care defined ifb 4+ canda + (b + c) are defined, and
in such the casea(+ b) + c=a+ (b + c);
(iii) foranya € E, there exists aunique elementc E suchthaa +a' = 1;
(iv) if a+ 1is defined inE, thena = 0.

If we definea < biff there exists an elemente E such that + ¢ = b, then
< is a partial ordering, and we write:=b — a.

For example, if G, u) is an Abelian unital po-group with a strong unit
u,?2 and if

'G,u:={geG:0=<g=<uj

is endowed with the restriction of the group additienthen (G, u); +, 0O, u) is
an effect algebra.

Let E andF be two effect algebras. A mappirig: E — F is said to be a
homomorphisnif (i) h(a + b) = h(a) + h(b) whenever + b is defined ing, and
(ii) h(1) = 1. A bijective homomorphisrh such thah~* is homomorphism is said
to be anisomorphisnof E andF.

2An elementu € G™ is said to be atrong unitfor a po-groupG, if given an elemeng € G, there is
an integemn > 1 such that-nu < g < nu.
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We say that an effect algebEasatisfies (i) theRiesz interpolation property
(RIP) for short, if, for allxy, X2, y1, V2 IN E, X; < y; foralli, j implies there exists
an element € E such thatx, < z < y; for all i, j; (ii) the Riesz decomposition
property, (RDP) for short, ifx < y; + y, implies that there exist two elements
X1, X2 € wWith X3 < y; andx, < y, such thaix = x; + Xo.

We recall that (1) ifE is a lattice, therkE has trivially the (RIP); the converse
is not true as wee see below. @)has (RDP) iff (Dvureénskij and Pulmannay”
2000, Lemma 1.7.5%; + X2 = y1 + Y. implies there exist four elementsg;, c;2,

C21, G2 € E such thatx; = €11 4 C12, X2 = C1 4 Cpp, Y1 = C11+ Cp1, andy, =
C12 + C22. (3) (RDP) implies the (RIP), but the converse is not true (e.ds, #
L(H), the system of all closed subspaces of a Hilbert sphdaenE is a complete
lattice but without (RDP). On the other hand, every finite poset with the (RIP) is
a lattice.

We recall that a poseH <) is anantilatticeif only comparable elements of
E have a supremum or infimum. It is clear that any linearly ordered poset is an
antilattice and every finite effect algebra with the (RIP) is a lattice.

A partially ordered Abelian groupq; +, 0) is said to satisfy th&iesz de-
composition propertprovided, giverx, yi, ¥» in G* such thak < y; + y», there
existxy, X2 in GT such tha = x; + x; andx; < y; for eachj. This condition is
equivalent by Goodearl (1986, Proposition 2.1) with the following two equivalent
conditions:

(a) Givenxy, X2, Y1, ¥2 in G such that; < y; foralli, j, there existz in G
such that; <z <y foralli, j.

(b) Givenxy, X2, 1, Y2in Gt suchthaky + x» = y; + Yo, there exist; 1, 212,
251, Zp2 in G such thatx, = 71 + z; for eachi andy; = zj + z,; for
eachj.

According to Goodearl (1986), such a gro@pvith is said to be th@nterpolation
group.

Ravindran (1996) (Dvuienskij and Pulmannay 2000, Theorem 1.17.17)
proved the following important result.

Theorem 2.1. Let E be an effect algebra witRRDP). Then there exists a unique
(up to isomorphism of unital Abelian po-groups) unital interpolation group (G, u)
with a strong unit u such thdt(G, u) is isomorphic with E.

Remark 2.2. We recall that in Theorem 2.1 all finite meets and joins from E
are preserved inQ, u), see Dvureénskij and Vetterlein (2001, Proposition 6.3).
Moreover, there is also a categorical equivalence among the category of effect
algebras with (RDP) and the category of interpolation Abelian unital po-groups
(Dvurecenskij, submitted).

A very important family of effect algebras are MV-algebras that entered
mathematics by Chang (1958).
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We recall that an M\algebrais an algebravl .= (M; &, ©,*, 0, 1) of type
(2,2,1,0,0) such that, for &, b, c € M, we have

(MVi) a®db=baa;

(MVii) (a®b)ydoc=ad (bac);
(MViii) a® 0=a;

(MViv) a® 1=1;

(MWV) (@")* = a;

(MVvi) a@ a*=1;

(Mwvii) 0* =1,

(Mwviii) (@*@b)*®b=(a®b*)*@a.

If we define a partial operatios on M in such a way thaa + b is defined inE

iff a < b*, thena+b:=a®b, the M;+, 0, 1) is an effect algebra. According
to Mundici (1986), every MV-algebra is isomorphic to the §§6G, u), where
a+b=(@a+Db)Au anda* =u—a(a, b e'(G,u)).

MV-algebras have appeared in the realm of effect algebras in many natural
ways: Mundici (1986) showed that starting from an AF&gebras we can obtain
countable MV-algebras, and conversely, any countable MV-algebra can be derived
in such a way. Bennett and Foulis (1995) introdudedymmetric effect algebras
that are exactly MV-algebras, and also Boolean D-posets of Chovanecoquka K”
(1992) are MV-algebras.

MV-algebras play a similar role in effect algebras as Boolean algebras do in
orthomodular posets—they describe maximal sets of mutually (strongly) compati-
ble elements. Moreover, Riahod (2000) recently proved an important result that
each lattice ordered effect algebra can be covered by MV-subalgebras that form
blocks.

3. IDEALS AND QUOTIENTS OF EFFECT ALGEBRAS

An ideal of an effect algebrd is a nonempty subsdt of E such that (i)
xeE,yel,x<yimply x € | and (ii) if x,y € |, andx + y is defined inE,
thenx +y e |. An ideal | is said to be th&Riesz idealf x € I,a,b € E and
X < a+ b, there exisgy, by € | such thak < a; + by anda; < aandb; <b.

For example, ifE is with (RDP), then any ideal df is Riesz.

We denote byZ(E) the set of all ideals oE; then{0}, E € Z(E).

The ideallg(a) of E fulfilling (RDP) generated by an elemeais the set

lo(@) = {x e E:JkeN,3a},...,a0 e E,a’ <a,x=a)+---+a}.

We say that an ided of an effect algebr& with (RDP) isprimeif, for all
idealsl andJ of E, | N J € Pimpliesl € P orJ C P. We denote byP(E) the
set of all prime ideals oE.
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As it was proved in Dvuregnskij (submitted), i& is a nonzero element of an
effect algebrd& with (RDP), there is an idealthat is maximal under the condition
a ¢ |; such an ideal is always prime (Dvweiskij, submitted, Proposition 3.5);
if a =1, any such ideal is said to lmeaximal and letM(E) denote the set of all
maximal ideals oE.

Let P be an ideal of an effect algebEa with (RDP). We define a relation
~poOnEviaa~phiffa—e=b-— f forsomeg, f € P. Then~p is arelation
on E, and the seE/P := {a/P : a € E}, wherea/P :={b € E : b ~ P,}, can be
converted into an effect algebr&/, +, P, 1/P) such thag/P + byP = ¢/P if
and only if there arey € a/P, b; € b/P, andc; € ¢/P such thata; + by = ¢;.
Moreover, ifE has (RDP), so hak/P.

The following important characterization of prime ideals was proved in
Dvurecenskij (submitted, Proposition 6.5).

Proposition 3.1. A proper ideal P of E withRDP) is prime if and only if EP is
an antilattice.

We recall that am-idealof a po-groupG is any directed convex subgroup of
G. An o-ideall of a po-groupG is said to be (imaximalif it is a proper subset of
G and it is not contained in any proper o-ideal®f (ii) primeif, for all o-ideals
P andQ of G with PN Q C |, we haveP C | or J C I, and (iii) avalueof a
nonzero elemeng if g ¢ | and it is maximal with respect to this property. Let
(G, u) be a unital Abelian pogroup; B/(G), M(G), andP(G) we denote the set
of all o-ideals, maximal o-ideals, and prime o-ideals, respectivel@.of

The following result from Dvureénskij (submitted) gives a one-to-one con-
nection among the sets of all ideals, maximal and prime ideals and the sets of
o-ideals, maximal o-ideals, and prime o-ideals.

Theorem 3.2. Let (G, u) be aunital interpolation po-group and letET'(G, u).
For any ideal | of E, we assign
d(1)={xeG:Ix,y,el, X=X+ +Xn—Y1— = Ym}.
Theng(l) is an o-ideal of (G, u). The mapping defines a one-to-one mapping
preserving the set-theoretical inclusion. The inverse mappinggiven by
¥(K):= KNJ[0,u], K € Z(G, u).

The restriction o to P(E) or M(E) gives a bijection betwee (E) and M (G),

andP(E) andP(G), respectively, which preserves the set-theoretical inclusion.
In addition, if K is a prime o-ideal of (G, u), then(K) := K N E is a prime

ideal of E, and if P is a prime ideal of E, ther{P) is a prime o-ideal of (G, u).

Moreover, an analogous result to Proposition 3.1 holds.
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Proposition 3.3. A proper o-ideal P of a unital Abelian po-group (G, u) satisfying
(RDP) is prime if and only if G/P is an antilattice.

4. HOLLAND THEOREM AND VISUALIZATION
OF EFFECT ALGEBRAS

In the present section, we give the main results concerning representation of
effect algebras with (RDP) and of MV-algebras by a set of automorphisms of an
antilattice or a linearly ordered set. Having such a representation, we are able to
visualized effect algebras and better to describe them.

Let (2, <) be a nonvoid antilattice, and 16&(€2) be the set of all auto-
morphismse : Q@ — Q, which preserve the partial order. Then A(2) can be
converted into a po-group such that the group-addition is the compaosition of auto-
morphisms, the order oA(R2) is defined viax < B iff (w)a < (w)B forallw € Q,
and the neutral element is the identity functionsen

Holland (1963) proved the basic result that evéigroup can be embedded
into the ¢-group A(2) for some linearly ordered s&t, and Glass (1972, Theo-
rem 54) generalized this result for directed po-groups satisfying (RIP) showing
that every such a po-group can be embedded into the po-gk(@jp for some
antilatticeQ.

We show that a similar result can be proved also for effect algebras proving
that every pseudoeffect algelissatisfying (RDP) can be represented as the set of
automorphisms of an antilattié@. Such a representation enables to present effect
algebras in a visualized form which can be useful more more precise investigation
of effect algebras.

Theorem 4.1. Every effect algebra E witiRDP) can be represented as an effect
algebra of automorphisms from(®) for some antilattice se® such that all finite
infima and suprema existing in E are preserved.

Proof: Without loss of generality, by Theorem 2.1, we can assume Ehat
I'(G, u), where G, u) is an Abelian interpolation unital po-group. The proof will
follows the following steps.

Step 1Let P be aprime ideal oE. According to Theorem 3.2,(P) is a prime sub-
group ofG, and consider a mappingp : E — A(Qp), whereQp = G/¢(P),
defined by x/¢(P))¢p(a) := (X + a)/¢(P),a € E(x € G). Then, fora,b €
E, () a<b, implies ¢p(a) < ¢p(b), (i) ¢p(a+b)=¢p(@)opp(b)=
¢p(b+a) = ¢p(b) o ¢p(a), (iil) pp(anb)=d¢pp(@) A ¢p(d) if arbis de-
fined in E, (iv) ¢p(a Vv b) = ¢p(a) v ¢p(b) if aVv b is defined inE, and (v)
facE:¢p(@=0=n{—x+¢(P)+x:xeG}NE=P.
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Step 2.Let g € G and letg £ 0 and setU(g) :={h € G: h > g}, whereE =
I'(G, u). We denote byA(g) an ideal ofE that is maximal with respect to the
propertyU (g) N A(g) = @. Since 0¢ U (g), A(g) exists due to the Zorn lemma.
We assertA(g) is a prime ideal ofE. Let | N J = A(g), wherel andJ are
ideals of E. Assume (an absurdum hypothesi(g) is a proper subset df
as well as ofJ. Takea e | NU(g) andb € JNU(g). We have Og < a, b.
By the interpolation holding inG, u), there is an element € G such that
0,g<c<a,b.SinceO<c<a,wehavece E,andg<ce | NJ = A(g),
which givesc € U(g) N A(g), a contradiction.

Step 3We define the Cartesian prodiigg = [ [{A(RQ)g : 9 € G, g £ 0} of the sys-
tem of antilatticeg A(2g)}¢, WwhereQg = G/Cy andCy = ¢(A(g)), and we or-
derEq by coordinates. Define a mappirig: E — Ep by f(a) = {¢g(a)}4(a €
E), wheregg := ¢

We claim thatf is injective. Assumef (a) = f(b). Then &+ a)/Cy =
(x +b)/Cq forall x € G andg £ 0. In particular, forx = 0 that givesa/Cy =
b/Cy. Hence,a — b = ¢4 for somecy € Ag(a — b is taken in the grous),
consequentlya — b € NgzoCqy = {0}. This proves thaf is an injective mapping
from E onto f(E) C Eq.

Assumef(a) < f(b).Ifg=a—b £0. Then g+ a)/Cy < (X + b)/Cqy
for all x e G andg Z 0. Consequently, this holds also for= 0, i.e.,a/Cy <
b/Cy, which means < ¢4 + b. Hence,a— b < ¢y, andcg € Ag_pnNU(a—
b), a contradiction according to Step 2. TherefoféE) can be converted into
an effect algebra, i.e.f(E); o, f(0), f(1)) is an effect algebra isomorphic with
E, whereo is the composition of automorphisms defined by coordinates.

According to Step 1f preserves all existing finite infima and suprema
existing inE.

Step 4.Totally order the nonnegative elements &f say {g: : t € T}, where
T is a linearly ordered set. S€l; := G/Cgy, and without loss of general-
ity we can assum&2s N =@ for all s,t € T such thats #t. Let Q =
UteT ¢, and define a partial order on Q2 by w; < w; iff wy € Qs andw; € Q¢
ands<tors=t andw; < w, in Qs. ThenQ is an antilattice with respect
to <.

Define a mappindy : E — A(R) defined via: letv € @, andw € ; for
auniquet € T. Let (w) fo(a) = (w)(¢gr)(a) € Qt, Wheregy, is defined in Step
1 and Step 3. Hence, & € E, then f(a) | 2 maps2; onto; forallt € T.
Similarly as in Step 3,fy is injective from E onto fo(E), and fo(E) is an
effect algebra of automorphisms@f(indeed, fo practically coincides with the
function f defined in Step 3), which finishes the proof. O

If M is an MV-algebra, then its visualization has the following form.
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Corollary 4.2. Every MV-algebra M can be represented as an MV-algebra of
automorphisms from &) for some linearly ordered sé.

Proof: Since every MV-algebra is a distributive lattice, and as an effect algebra
it fulfils (RDP), an ideal of an MV-algebr! (considered as an effect algebra)

is prime iff M/P is a linearly ordered set. Consequenty,= I'(G, u) for some
Abelian unital¢-group G, u). Hence, the se® from the proof of Theorem 4.1 is
linearly ordered, which by Theorem 4.1 gives the assertion in question. O
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